Tag: automotive

21 Oct 2022

PowerFLOW: Vehicle Styling for Aerodynamic Performance, Efficiency, and Product Certification

Vehicle manufacturers face challenges from all sides. As new competitors enter the industry the pressure is on to create stylish, differentiating vehicles and get them to market fast. But every vehicle must also pass stringent certification tests to satisfy regulators that it performs efficiently and meets emissions standards.

When aggressive styling leads the design process it can compromise aerodynamic performance, causing delays as engineers have to spend extra time putting things right so the vehicle can be certified for sale. Electric and autonomous vehicles intensify the challenge, bringing big opportunities to experiment with form but also increasing risk, as designers don’t yet have tried and trusted data to tell them what has worked in the past. As if this wasn’t issue enough, customers continue to expect the experience of driving any new car to match the promises of its eye-catching style. Trade-offs between looks and performance are no longer acceptable and to avoid them, manufacturers need a rapid, robust process that brings styling and engineering together from the start.

OVERCOME CHALLENGES THROUGH INTEGRATED MODELING & SIMULATION

Designers are under pressure to innovate but also to get it right-first-time. If the aesthetic theme causes problems with aerodynamics, for instance, it’s time-consuming, costly and sometimes not possible to rectify those issues later. As a result, designers need to be confident that as well as looking good, the vehicles they create will meet all performance targets.

So, just how can vehicle manufacturers accelerate innovation, while reducing risks and time to market? One crucial step is to integrate modeling and simulation from the beginning of the design cycle. This is because Simulation-driven design allows both stylists and analysts to create innovative concepts, refine details and meet performance targets. Simulation allows designers and engineers to create and test virtual models of vehicles while avoiding the time and cost of building multiple physical prototypes. In general, simulation enables the final product to be built faster, and to higher engineering standards, all while reducing costs. This is especially important in a crowded automotive market where manufacturers are under pressure to expand their range and offer custom configurations. 

All the challenges listed above can be addressed through a simulation approach that helps designers and engineers connect the geometry between performance analysis and styling, while managing complexity across the entire development process. SIMULIA has solutions to do that.

POWERFLOW: THE SOLUTION

WHAT IS POWERFLOW?

PowerFLOW is SIMULIA’s computational fluid dynamics solution that simulates fluid flow over the vehicle with full-time accuracy. Unlike many fluid dynamics solutions which show only the average drag or condition of the flow field, PowerFLOW provides transient aerodynamic simulations using either ideal, uniform flow conditions or a realistic wind environment. Every element of the vehicle can be analyzed, enabling designers and engineers to quickly evaluate vehicle performance and drag, whether in ideal conditions similar to a wind tunnel or in the fluctuating conditions drivers will experience on the road. When this information is available early in the design cycle, it can be used to inform style decisions to ensure that great style does not mean compromises on performance. In fact, multiple vehicle manufacturers have already received approval for digital certification under WLTP using SIMULIA PowerFLOW.

 

ANALYSE THE IMPACT OF DESIGN CHANGES ON PERFORMANCE

DesignGUIDE, introduced in the 2020 release of PowerFLOW, empowers vehicle manufacturers to interactively explore the impact of design changes on performance. It provides feedback that connects performance to design in a graphical, intuitive way that gives stylists the freedom to craft appealing aesthetics while also achieving performance targets.

Using a color-coded surface map, DesignGUIDE provides a 3D representation of the vehicle which tells the stylist, designer or engineer how moving a surface in a given direction will affect aerodynamic performance. Colored areas indicate, for example, that pulling a certain surface outward will make the drag worse while pushing it in will improve it. It also provides vital information on the areas where designers can make styling choices that will have zero impact on the vehicle’s performance. This intuitive guidance leaves creative decisions firmly in the hands of designers, providing them with the information they need to combine aerodynamic performance with the aesthetics consumers want.

Crucially, by marrying creative freedom with the ability to optimize aerodynamic performance from the start of the design process, DesignGUIDE can rapidly accelerate vehicle development. Better communication between engineering and design teams, coupled with intuitive guidance, speed up the process of creating right-first-time designs that combine aesthetic with aerodynamic performance

 

INNOVATE, VALIDATE, AND OPERATE ON THE 3DEXPERIENCE PLATFORM

SIMULIA tools are available on the 3DEXPERIENCE platform, which allows designers and engineers to collaborate seamlessly across disciplines and different teams throughout the organization. Breaking down silos increases the potential for innovative solutions that improve vehicle performance while freeing designers to create exciting new concepts. In addition, manufacturers and suppliers can share data easily and build accurate simulation models.

  • Detect product design flaws early
  • Measure the impact of design changes on performance
  • Compare design alternatives under operating conditions 
  • Reduce the cost of material by simulation-driven lightweighting 
  • Reduce or eliminate costs and time required to perform prototype testing 
  • Gain certainty that the product will pass acceptance testing

 

CONCLUSION

In a competitive and rapidly changing global automotive industry, manufacturers need to be able to create stunning new vehicle designs that meet stringent certification requirements and deliver a superb driving experience on the road. With the solutions offered by SIMULIA, they can bring design and engineering decisions together from the very start of the design cycle, reducing the risk associated with new styling elements by providing intuitive guidance on how design decisions will affect aerodynamic performance. Integrating engineering insights into the design process gives vehicle stylists the freedom to create innovative, aesthetically pleasing new vehicles while ensuring they meet and exceed performance goals from the start. Virtual prototyping and testing of every variant also reduce the number of physical tests required, speeding up the certification process so manufacturers can get exciting new models to market faster.