In a Q&A with ConnectPress, Jon Gable, PLM Business Leader for Adaptive, gets to the heart of why even small manufacturing shops can derive tremendous value from implementing a product lifecycle management (PLM) system that works hand-in-hand with an enterprise resource planning (ERP) system.
Fundamental Roles of ERP and PLM
ERP systems focus on operations: how a company produces a product, including tracking money, materials, production capacity, orders and executions, labor factors, risk, compliance, and more. What ERP cares most about is the financial information to do with purchasing, producing, or assembling parts.
PLM systems focus on the innovation side of a business: how a company develops a product from concept to end-of-life. The tools within PLM—including mechanical CAD, ECAD, FEA, and manufacturing simulation—create the design information that goes into the ERP system. In addition, PLM tools expand on ERP’s fundamental purpose of managing purchasing, manufacturing, and assembly of designs by answering a variety of other questions. Will the finished parts perform as expected? Will they be cost-effective? Are there better alternatives? Can they really be assembled ergonomically? Will there be clashes as robotics move parts into place?
A PLM system allows for prediction and correction that an ERP system isn’t capable of, for example, helping inform ERP-centered engineers about production workflows based on a component’s shape, handling characteristics, and tolerances, not just machine availability.
Another huge value PLM contributes is the ability to simulate factory-floor manufacturing processes, which is critical for change management, allowing an organization to synchronize different engineering domains to fully understand the impact of change. Instead of receiving a new requirement, making a physical change to a subsystem, and working through the physical manufacturing process to evaluate any issues, a robust PLM platform lets you complete the evaluation virtually—and quickly. Gable refers to this state as “the holy grail of where manufacturing organizations want to get to.”
The Modern Market Means You Need PLM
The challenges of three current trends in manufacturing can all be comprehensively managed by a PLM system: extreme product variations and configurability, increased product specialization, and complex mechatronic engineering.
Setting up manufacturing engineering to handle product variation. ERP systems deal with what part numbers to produce, which doesn’t help the variability question. In contrast, PLM systems allow engineering and simulation to be done to validate that variant configurations can be designed and produced—meaning you can validate products before exposing possible configurations to the market.
Managing different product configurations. As companies manage these variations of products—and validate the new design configurations—it’s ever more important and complex to ensure proper revisions and versions of a design are being used for the correct product and manufacturing simulations, as well as production. With its “single source of truth,” a centralized location for all product and manufacturing data, PLM systems make this management significantly easier.
Addressing complex designs. Rarely do products have only mechanical function these days—it’s much more common that they contain electronic and software aspects, as well. Simpler tools for tracking design evolution, such as a product data management (PDM) system, worked for simpler products. But the added complexity of mechatronic engineering increases the need for PLM platforms that can handle a broader range of teams, contributors, and collaborators involved in a single design.
How To Begin with PLM
The barrier to small- and mid-sized organizations implementing PLM is twofold: cost and effort. Many are finally reaping the rewards of a complete ERP integration and routine content management workflows. The idea of adding another enterprise platform, and one that comes with a decent price tag, can be daunting—regardless of potential value in the end. But the benefits of the long-view solution can still be achieved bit by bit with modularity. Most PLM vendors offer modular, manageable packages that build on each other, with fairly affordable on-premise, cloud, or even SaaS options.
Similarly, following the theory of eating the elephant “one bite at a time,” the best way to start an implementation is with a single process you want to improve. The process should involve a targeted group of users, have the most business impact, and be the foundation for expanded applications. Typically, this is something like a small design team managing their content, whether electrical, mechanical, or software.
Follow-on phases are built on this implementation, such as users who consume the engineering content wanting to improve their processes. For example, people who track material-compliance regulations for different markets may want to move the information they track offline—unlinked and siloed—into the PLM system where it lives in context with the design data.
Centralized, accessible, comprehensive product data makes everyone associated with product manufacturing more efficient, which ultimately saves money on time, quality, and customer satisfaction.
To read the full Q&A with PLM Business Leader Jon Gable, or to find out more about how a PLM platform can transform your processes, contact Adaptive.